Human Factors Engineering NASA - Johnson Space Center

Nancy Currie

Habitability and Human Factors Office Manager Space Human Factors Engineering Deputy Project Manager NASA – Johnson Space Center

Brian Peacock

Space Human Factors Engineering Discipline Coordinating Scientist
National Space Biomedical Research Institute

Barbara Woolford

Space Human Factors Engineering Project Manager NASA – Johnson Space Center

November 8, 2002

Agenda

- -- JSC is the coordinating center for NASA Space Human Factors Engineering
- What Is SHFE and Why Is It Important?
- SHFE Project Details
- Current and Future Work

What Is SHFE?

Assessment and Modeling of Human — Information Management and **Performance**

- Anthropometrics and biomechanics
- Cognitive performance
- Perception (visual, auditory, etc.)
- Proficiency (training)
- Workload and planning/scheduling
- Team performance (interaction, skills maintenance, etc.)

Systems and Habitability Design

- Human-system interaction
- Habitable volume and architecture
- Environmental factors (noise, lighting, temperature, etc.)
- Social factors (privacy, collaboration, recreation, etc.)
- Human-systems interface design
- Habitability design requirements

Communication

- Data collection, analysis, and distribution
- Crew autonomy
- Human-information interfaces
- Information exchange

What Is SHFE?

- Approach: Define and apply human performance information to hardware design and mission operations
- Results: Maximize system performance and reduce mission risk

SHFE Activity Paths

Technology/Science Readiness Level (TRL / SRL)

Why Is SHFE Important?

- Specific SHFE opportunities for ISS risk reduction and productivity improvements:
- Workload, crew activity scheduling
 - More important as length of duration increases
- Emergency response
 - Adequacy of Caution and Warning System notifications
 - Ease of use/understanding of emergency procedures
- Human-computer interfaces
 - Unix environment differences as compared to standard MS Windows
 - Multi-layered menu scheme
 - Situational awareness can be impacted by current display design
 - Must be correlated with procedures
- Procedures

Too long, confusing, time consuming

Why Is SHFE Important?

- Specific SHFE opportunities for ISS improvements (continued):
 - Stowage and inventory management
 - Nonproductive time spent looking for items
 - Lack of adequate stowage locations for the amount of equipment and supplies onboard
 - Acoustic environment
 - Reduce potential for permanent or temporary noise-induced hearing loss
 - Code Standardization
 - Labeling
 - Location codes
 - Body restraints
 - Robotics OperationsGlovebox Operations

Resources

NASA JSC Human Factors Expertise

NASA (SF)
2 Ph. D - HFE
8 MS / BS HFE,
Engineering, Architecture

NSBRI 5 Ph.D - HFE 2 MS Engineering

Engineering, Safety
ISS, Crew Office
3 Ph. D - HFE
8 MS Engineering

Johnson Engineering
1 MD
4 Ph.D - HFE
40 MS / BS HFE / Engineering

JSC Facilities

Anthropometry & Biomechanics Facility

- Data Collection, Models, Data Bases
 - Anthropometry data base
 - linear measurements and 3-D scans
- Biomechanics
 - Force and Strength data collection
 - Linear and 3-D strength measurement

Usability Testing and Analysis Facility

- Physical interfaces
 - Posture, restraints, reach, access
- Cognitive interfaces
 - HCI
 - Procedures

JSC Facilities

Graphics Research and Analysis Facility

- Human Modeling for 0-G
 - Neutral body posture
 - Reach and access, visibility, interference
- Lighting in Space
 - Light sources, shadows, reflections
 - Camera properties

Lighting Environment and Test Facility

- Data collection for lighting models
 - Light sources, shadows, reflections
 - Camera properties

Why Is SHFE Important? Success Stories

Improved crew usability for ISS hardware design

- Airlock: improved access to critical controls and co-located sequential controls
- Stowage rack and trays: match human strength capabilities
- Portable light: prevented touch temperature hazard
- Labels and icons: phosphorescent for emergency equipment and egress
- Stowage constraints: reduced illumination issues
- Onboard stowage: protected operational volume for crew exercise and emergency health care

Operational benefits from SHFE NRAs

- Crew impact loads: data used to define design requirements for ISS interior structure
- Strength, endurance, and range of motion in EMU-suited subjects: used for EVA task planning
- Psychophysical studies of video quality: used by international standards organizations to measure effects of video compression

Why Is SHFE Important? Success Stories

Lighting / viewing models

- High-fidelity models of external lighting saved ISS Program Office \$4M by eliminating the need for additional lights
- Pre-flight orbital lighting and crew viewing assessments have contributed to the success of robotics operations during ISS assembly and maintenance tasks

NASA-STD-3000, Man-Systems Integration Standards (MSIS)

- Captures knowledge about designing for humans in space environments
- Distributed to individuals, schools, and companies throughout the world
- Excellent reference for human factors requirements; used by flight programs
- Acknowledged need for review and re-design of this important document

Agenda

- What Is SHFE and Why Is It Important?
- SHFE Project Details
- Current and Future Work

SHFE Project

SHFE Management Team

- Project Manager and Deputy Manager at JSC
- Deputy Manager for SHFE Activities at ARC
- Discipline Coordinating Scientist (NSBRI, at JSC)

Guiding Documents

TDPs: technology development projects STWG: Science and Technology Working Group

Guiding Documents SHFE Content in CPR

Risk #20:

Human performance failure because of human-system interface problems and ineffective habitat, equipment design, workload, or in-flight information and training systems

Critical Questions

- What information and communication systems, methods, and tools will support a crew's ability to meet mission objectives? (6.09)
- What workload schedule(s) will enhance crew performance? (6.10)
- What methods of assessing human performance will be most effective? (6.11)
- What factors in systems and habitat design will best enhance crew's ability to live and work on long-duration space missions? (6.12)
- What computational *models* best *predict* human performance on space missions? (6.22)

Over 100 detailed deliverables are defined and being baselined in CPR

Interfaces

SHFE interfaces with many human factors communities

External Interfaces

- Academia
- Industry
- DoD
- Other government agencies (FAA, NIOSH, etc.)

Internal Interfaces

- Behavior and Performance
- ALS/AEMC/AEVA
- Medical Ops
- Mission Ops
- Advanced EVA
- Crew Offices
- Human-Centered Computing (Code R)
- Engineering

 (e.g., simulation, automation and robotics, flight crew systems)
- Flight Programs

Interface Examples

Mission Operations Directorate

- SHFE NRA work on anomaly response communication patterns in mission control
- SHFE participating in crew scheduling tiger team

Behavior and Performance

- Members of B&P IPT
- Pls working in both SHFE and B&P (e.g., Stuster and Woods)

Medical Operations

- Emergency medical procedures project
- Exercise physiology and biomechanics

Academia

- Collaborative projects in work (e.g., Advanced 3-D Visualization NRA grant, Wayne State/JSC)
- NSBRI
- First Research Opportunity Workshop at JSC in December 2002

Interface Examples

- Academia, continued
 - Convened second Biennial Space Human Factors Workshop
 - Held January 23-24, 2002
 - 95 participants represented academic and NASA community
 - Proceedings: http://www.dsls.usra.edu/dsls/meetings/shfp/proceedings/Contents.pdf

- Monthly PI telecons conducted to maintain contact and forum discussions
- Every other year contact with PIs through the Bioastronautics Workshop – JSC, January 14-15, 2003

External Guidance

- Science and Technology Working Group (STWG)
 - Members represent academia, industry, and military
 - 3 new members invited to join in January 2002
 - Includes broad spectrum of human factors expertise:
 - Human-computer interfaces
 - Habitability
 - Military and security
 - Health and safety
 - Automotive industry
 - Complex systems maintenance
 - Knowledge management
 - Anthropometrics/Biomechanics
 - Human-Robotic Systems interactions
 - Spaceflight Operations
 - Provides expert external guidance
 - Short- and long-term strategy
 - Knowledge gaps
 - Merit review of internal mid-range projects and proposals

Agenda

- What Is SHFE and Why Is It Important?
- SHFE Project Details
- Current and Future Work

Current and Future Work

SHFE

Reduced risk (CPR) Better productivity

Greater success More science

- Brings near-term benefits to current flight programs
- Answers critical questions for **future** long-duration space missions

Current Work

NRA Grants

- 7 in progress
- 4 selected but not started
- 1 flight investigation just selected

Topics include:

- Model development
 - Error prediction
 - Maintenance
 - Mission control communication
 - On-orbit crew loads
 - On-orbit lighting
- Augmented and virtual reality
 - Teleoperation and telepresence
 - Augmented reality for training

- Sensory and cognitive characterization
 - Human centered visual displays
 - Kinesthetics
 - Utility of immersive displays
 - Eye tracking technology
 - Work practices
- Physical data analysis
 - Crew reactions

Current NRA Grants

PI	Institution	Due	Title
Neumann	USC	Mar-03	Augmented Reality for Space Flight
Zamorano	Wayne State U.	Jan-03	The development and human factors analysis of advanced 3-D visualization for telepresence
Nitzan	SRI	Dec-02	Telepresence human factors for glove box experiments
Badler	U Penn	Sep-03	Crew Task Simulation for Maintenance, Training, & Safety
Schlegel	U Oklahoma	Dec-03	Integrated Crew Performance Assessment & Training
Ellis	ARC	Sep-03	Kinesthetic compensation for sensorimotor rearrangements
Watson	ARC	Sep-03	Human Centered Visual Displays
McCann	ARC	Dec-05	Development of a Crew-Systems Concept for Vehicle Health Management in Next Generation Spacecraft
Schlegel	U. Oklahoma	Dec-05	Development and Evaluation of RMS Operator Proficiency and Training Effectiveness Metrics
Le	SoftMax	Dec-05	Automatic Speech Recognition in Noisy Environments
Maida	JSC	Dec-05	Enhanced Lighting Techniques and Augmented Reality to Improve Human Task Performance

TDP Selection Process

Mid-Range TRL Internal Projects

Current Work

Technology Development Projects (TDPs)

- 9 mid-range TRL projects now in progress:
 - 3-D anthropometrics tools
 - Crew sleep scheduling tool
 - Restraints systems study
 - Imagery systems for improved habitability
 - Malleable human-computer interfaces
 - Emergency medical procedures usability
 - Physiological effects of habitability factors
 - Lessons learned in requirements verification
 - SHFE database

Current TDPs

• 9 in work: 1 ends FY02, 1 ends FY03, and 7 end FY04

Project	Expected Products	
SHFE database	Central location for tracking research results and gaps for SHFE	
Restraints	Detailed requirements and design concept for crew restraints based on STS and ISS experience	
Emergency medical procedures	Usability evaluation of ISS medical procedures; comparison with procedures from analogs such as Antarctic and military; methodologies for more usable procedures	
3-D anthropometrics	Software to process digital surface maps of human bodies for vehicle and hardware ergonomic analysis	
Physiological index of habitability	Quantitative assessment of physiological and performance responses to habitability and other factors	
Crew sleep scheduling	A scheduling tool based on a mathematical model of performance	
HF requirements process	Revisions to HF requirements implementation and verification processes based on lessons learned	
Imagery systems	Validated requirements, technical specs for multipurpose imagery displays for exercise enhancement and habitability / psychological purposes	
Malleable human interfaces	Toolkit and rationale for multi-purpose HCI interface design	

Future Work

- Design standards and requirements
 - Key method of putting human factors knowledge and technology to use
 - Current document, MSIS, is inadequate
 - Severely out of date (last updated late 1980s)
 - No regular process for infusing latest knowledge
 - Reinventing MSIS planned

- External research
- NASA research
- Operations experience
- DoD and academic experience

Human-Systems Design Standards (new MSIS)

Summary

- SHFE is critical to success of current and future human space missions
- SHFE Project has well-defined processes
 - for selecting and managing research, and
 - for applying results to operations
- SHFE Project is well-connected to extramural human factors community
- Current and future projects not only provide near-term benefits to ISS, but also address human factors concerns for future space exploration

Next Steps for SHFE

- Continuation of clarification of SHFE aims and objectives
 - Implementation plan
 - Critical Path Roadmap or other detailed objectives
- Continue funding of new mid-range technology development projects
 - FY'03 projects have been reviewed and approved
- SHFE database and MSIS reinvention
 - Translate results of SHFE basic and applied research into flight programs
 - One of highest priority over next few years
- Need better methods for improving "success rate" of NRA and TDP projects.